Quasi-algebraically closed field

In mathematics, a field F is called quasi-algebraically closed (or C1) if every non-constant homogeneous polynomial P over F has a non-trivial zero provided the number of its variables is more than its degree.

In other words, if P is a non-constant homogeneous polynomial in variables

X1, ..., XN,

and of degree d satisfying

d < N

then it has a non-trivial zero over F; that is, for some xi in F, not all 0, we have

P(x1, ..., xN) = 0.

In geometric language, the hypersurface defined by P, in projective space of dimension N − 1, then has a point over F.

Examples and properties

The Brauer group of a quasi-algebraically closed field is trivial.

The idea of quasi-algebraically closed fields was investigated by C. C. Tsen, a student of Emmy Noether in a 1936 paper; and later in the 1951 Princeton University dissertation of Serge Lang. The idea itself is attributed to Lang's advisor Emil Artin.

Ck fields

Quasi-algebraically closed fields are also called C1. A Ck field, more generally, is one for which any homogeneous polynomial of degree d in N variables has a non-trivial zero, provided

dk < N,

for k ≥ 1.

Lang and Nagata proved that if a field is Ck, then any extension of transcendence degree n is Ck+n. The smallest k such that K is a Ck field (\infty if no such number exists), is called the diophantine dimension dd(K) of K.

Artin conjectured that p-adic fields were C2, but Guy Terjanian found p-adic counterexamples for all p. The Ax–Kochen theorem applied methods from model theory to show that Artin's conjecture was true for Qp with p large enough (depending on d).

References